Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Hou, ${ }^{\text {a }}$ Dan Li, ${ }^{\text {a* }}$ Ye-Gao Yin, ${ }^{\text {a }}$

 Tao Wu^{a} and Seik Weng $\mathrm{Ng}^{\mathrm{b}}$${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia
Correspondence e-mail: dli@stu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.057$
$w R$ factor $=0.178$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(Acetonitrile- κN)(4'-phenyl-2,2':6', $2^{\prime \prime}$-terpyridine $-\kappa^{3} N$) silver(I) hexafluorophosphate acetonitrile solvate

In the title complex, $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right] \mathrm{PF}_{6} \cdot \mathrm{CH}_{3} \mathrm{CN}$, the Ag^{I} atom is coordinated by a tridentate chelating 4^{\prime}-phenyl$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand and an acetonitrile molecule, to form a distorted square-planar geometry.

Comment

We have previously demonstrated that 4^{\prime}-phenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine acts as a chelating tridentate ligand when coordinating to Cu^{I}, to form a five-coordinate copper complex (Feng et al., 2002). In this work, the ligand is used to coordinate to Ag^{I}, giving the title complex, (I).

(I)

In complex (I) (Fig. 1), the Ag centre is coordinated by three N atoms from the 4^{\prime}-phenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand and an N atom of the acetonitrile, showing an essentially square-planar geometry with constraints imposed by the

Figure 1
A view of the asymmetric unit of (I), showing the atom-labelling scheme and with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.

Received 29 June 2004
Accepted 6 July 2004
Online 17 July 2004
\qquad
4^{\prime}-phenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridyl ligand. The sum of the angles about the Ag atom is 360.0°.

It has been shown that $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine-analogue ligands and Ag^{I} form a series of dinuclear and polynuclear molecules via $\mathrm{Ag} \cdots \mathrm{Ag}$ interactions. The anions and solvents, and the additional steric constraints of the substituents, are some of the factors which influence the coordination and aggregation architecture of Ag^{I}-terpyridine systems (Baum et al., 1998; Constable et al., 1998; Hannon et al., 2002). In the present study, a donor solvent, $\mathrm{CH}_{3} \mathrm{CN}$, was used. It is not surprising that only a mononuclear Ag^{I} complex was obtained.

Experimental

The 4^{\prime}-phenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand was synthesized according to the method of Constable et al. (1990). To an acetone solution $(10 \mathrm{ml})$ of $\mathrm{AgPF}_{6}(0.0253 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added 4^{\prime}-phenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine $(0.0390 \mathrm{~g}, 0.1 \mathrm{mmol})$. A yellow precipitate was formed after stirring for 3 h and this was isolated by filtration. A solution of the resulting solid in acetonitrile was allowed to stand for 5 d and yellow prismatic crystals of (I) were obtained (yield 55\%).

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right] \mathrm{PF}_{6} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=644.31$
Monoclinic, $P 2_{1} / n$
$a=16.777(1) \AA$
$b=7.8257(6) \AA$
$c=19.447(1) \AA$
$\beta=90.356(2)^{\circ}$
$V=2553.2(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.354, T_{\text {max }}=0.898$
12897 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.178$
$S=1.06$
4488 reflections
345 parameters
H-atom parameters constrained
$D_{x}=1.676 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1971
reflections
$\theta=2.4-20.3^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, yellow
$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$

4488 independent reflections
3262 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\max }=25.0^{\circ}$
$h=-17 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-20 \rightarrow 23$

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0996 P)^{2}\right.$
$\quad+1.6223 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.06$ e \AA^{-3}
$\Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}$
$D_{x}=1.676 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1971
reflections
$\theta=2.4-20.3^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$
4488 independent reflections
3262 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-20 \rightarrow 23$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0996 P)^{2}\right.$
$+1.6223 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.06 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Ag1-N1	$2.348(5)$	Ag1-N3	$2.470(5)$
Ag1-N2	$2.378(4)$	Ag1-N4	$2.187(6)$
N1-Ag1-N2	$69.3(1)$	$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 3$	$67.1(2)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 3$	$136.4(2)$	$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 4$	$163.4(2)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 4$	$127.2(2)$	$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{N} 4$	$96.4(2)$

The reported transmission factors are those calculated by $S A D A B S$ (Bruker, 2002), which treats other effects simultaneously with absorption as part of the interframe scaling process. H atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for phenyl H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms], and were included in the refinement in the riding-model approximation. The methyl groups were allowed to rotate as rigid groups. The final difference map had a significant peak near atom F3, but was otherwise featureless.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (grant No. 021240) and the University of Malaya for supporting this study.

References

Baum, G., Constable, E. C., Fenske, D., Housecrofe, C. E. \& Kulke, T. (1998). Chem. Commun. pp. 2659-2660.
Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Constable, E. C., Edwards, A. J., Haire, G. R., Hannon, M. J. \& Raithby, P. R. (1998). Polyhedron, 17, 243-253.

Constable, E. C., Lewis, J., Liptrot, M. C. \& Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.
Feng, Q., Li, D., Yin, Y.-G., Feng, X.-L. \& Cai, J.-W. (2002). Acta Chim. Sin. 60, 2167-2171.
Hannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. \& Alcock, N. W. (2002). Chem. Eur. J. 8, 2225-2238.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

